大学职业搜题刷题APP
下载APP
首页
课程
题库模板
Word题库模板
Excel题库模板
PDF题库模板
医考护考模板
答案在末尾模板
答案分章节末尾模板
题库创建教程
创建题库
登录
logo - 刷刷题
创建自己的小题库
搜索
半导体制造技术题库 - 刷刷题
半导体制造技术题库
题数
61
考试分类
半导体芯片制造工>半导体制造技术
售价
¥10
手机预览
收藏
分享
复制链接
新浪微博
分享QQ
微信扫一扫
微信内点击右上角“…”即可分享
去刷题
简介
半导体芯片制造工-半导体制造技术
...更多
0道
0道
0道
章节目录
题目预览(可预览10题)
【简答题】
[1/61]简述杂质在SiO 2的存在形式及如何调节SiO 2的物理性质。
参考答案:

热氧化层中可能存在各种杂质,某些最常见的杂质是与水有关的化合物,其结构如图所示。如果氧化层在生长中有水存在,一种可能发生的反应是一个氧桥还原为两个氢氧基。Si:O:Si→Si:O:H+H:O:Si网络构成者——一些杂质会被有意掺入热淀积SiO2中,用来改善它的物理性质和电学特性,例如硼、磷,称为网络构成者,它们可以调节有氧桥和无氧桥的比例,使得SiO2的强度上升或者下降。当B替代Si之后,顶角上的四个O只有三个O可以同B形成共价键,剩余的一个O因无法与中心的B形成共价键,而变成了非桥键O,因此SiO2网络中非桥键O增加,强度下降。当P替代Si之后,与原有的四个O形成共价键,还多余一个价电子,这个多余的价电子还可以与近邻的一个非桥键O形成桥键O,因此SiO2网络强度增加。网络改变者——存在于SiO2网络间隙的杂质为网络改变者。一般以离子形式存在,离子半径较大,替代硅的可能性很小。例如Na、K、Pb、Ba等都是网络改变者。网络改变者往往以氧化物形式进入SiO2中。进入网络之后便离化,并把氧离子交给SiO2网络。Na2O+ΞSi-O-SiΞ→Si–O-+Osup>—<SiΞ+2Na+网络中氧的增加,使非桥键氧的浓度增大,SiO2网络的强度减弱。

参考解析:
【简答题】
[2/61]热退火用于消除离子注入造成的损伤,温度要低于杂质热扩散的温度,然而,杂质纵向分布仍会出现高斯展宽与拖尾现象,解释其原因。
参考答案:

离子注入后会对晶格造成简单晶格损伤和非晶层形成;损伤晶体空位密度大于非损伤晶体,且存在大量间隙原子和其他缺陷,使扩散系数增大,扩散效应增强;故,虽然热退火温度低于热扩散温度,但杂质的扩散也是非常明显的,出现高斯展宽与拖尾现象。

参考解析:
【简答题】
[3/61]射频放电与直流放电相比有何优点?
参考答案:

直流放电中,电荷在表面的积聚会使电场减小,直到等离子体消失。在射频电场中,因为电场周期性地改变方向,带电粒子不容易到达电极和器壁而离开放电空间,相对地减少了带电粒子的损失。在两极之间不断振荡运动的电子可以从高频电场中获得足够的能量使气体分子电离,只要有较低的电场就可以维持放电。阴极产生的二次电子发射不再是气体击穿的必要条件。射频电场可以通过任何一种类型的阻抗耦合进入淀积室,所以电极可以是导体,也可是绝缘体。

参考解析:
【简答题】
[4/61]简述RTP在集成电路制造中的常见应用。
参考答案:

1)杂质的快速热激活RTP工艺最具吸引力的的热点之一是晶圆片不用达到热平衡状态,意味着电活性的有效掺杂实际上可以超过固溶度限制。例如,对砷进行数毫秒的退火,它的激活浓度可达到3×1021左右,大约是其固溶度的10倍。因为,在短时间的退火过程中,砷原子没有足够的时间来形成聚团并凝聚成无活性的缺陷。
2)介质的快速热加工快速热氧化(RTO)可以在合适的高温下通过精确控制的气氛来实现短时间生长薄氧层。(干氧方法)RTO生长的氧化层具有很好的击穿特性,电性能上坚固耐用。由于不均匀温度分布产生的晶圆片内的热塑应力影响了RTO的均匀性。若适当冷却反应腔壁,可以用作冷壁工艺,防止腔壁污染后续工艺。3)硅化物和接触的形成快速热处理也经常被用于形成金属硅化物接触,其可以仔细控制硅化反应的温度和环境气氛,以尽量减少杂污染,并促使硅化物的化学配比和物相达到最理想的状态。形成阻挡层金属也是RTP在Si技术中的一个应用,这些导电的阻挡层金属可以阻止硅衬底和用于器件互联的Al基合金之间的互扩散。另外RTP还可以在GaAs工艺中用于接触的形成,淀积一层金锗混合物并进行热退火,可以在N型GaAs材料上形成低阻的欧姆接触。

参考解析:
【简答题】
[5/61]说明影响氧化速率的因素。
参考答案:

1)氧化剂分压因为平衡情况下,SiO2中氧化剂的浓度C0=HPg,而抛物型速率常数B=2DSiO2C0/N1,所以气体中的氧化剂分压Pg是通过氧化剂的浓度对速率常数B产生影响,B与Pg成正比关系。A与氧化剂分压无关。因为B、B/A均与Pg成正比,那么在一定氧化条件下,通过改变氧化剂分压可达到改变二氧化硅生长速率的目的。2)氧化温度对抛物线性速率系数B的影响是通过氧化剂在SiO2中扩散系数DSiO2C0/N1产生的。由B=2DSiO2C0/N1可知,B与温度之间也是指数关系。对线性速率系数B/A的影响线性速率常数B/A与温度的关系如图,对于干氧氧化和水汽氧化都是指数关系,激活能分别为2.00eV和1.96eV,其值接近Si-Si键断裂所需要的1.83eV的能量值,说明支配线性速率常数B/A的主要因素是化学反应常数ks,ks与温度的关系为:ks=ks0exp(-Ea/kT)其中,ks0为实验常数,Ea为化学激活能。3)晶向抛物型氧化速率常数B,与硅衬底晶向无关,这是因为在氧化剂压力一定的条件下,B的大小只与氧化剂在SiO2中的扩散能力有关.线性氧化速率常数B/A则强烈地依赖于晶面的取向,因为在氧化剂分压不是很低时气相质量输运系数h>>ks,在这种情况下线性氧化速率常数的大小主要由化学反应常数ks决定,即由硅表面处的原子经化学反应转变为SiO2的速率决定。表面化学反应速率是与硅表面的原子密度,也就是与表面的价键密度有关。(111)面上的硅原子密度比(100)面上大。因此,(111)面上的线性氧化速率常数应比(100)面上大。4)杂质影响掺磷/硼掺氯在干分子氧中加入少量(1%~3%)卤素能够显著改善SiO2特性:①加速反应Si-O键能为4.25eV,Si-Cl键能为0.5eV。氯气与Si反应生成的SiCl4可以与氧气反应生成SiO2,这里氯气起到了催化剂的作用。②Cl-能够中和积累在表面的电荷。③氯气能够与大多数重金属原子反应生成挥发性的金属氯化物,起到清洁作用。

参考解析:
【简答题】
[6/61]简述RTP设备的工作原理,相对于传统高温炉管它有什么优势?
参考答案:

RTP工艺是一类单片热处理工艺,其目的是通过缩短热处理时间和温度或只缩短热处理时间来获得最小的工艺热预算(ThermalBudget)。RTP工艺的发展,是为了适应等比例缩小器件结构对杂质再分布的严格要求;最早的RTP工艺主要用于注入后的退火。目前,RTP工艺的应用范围已扩展到氧化、化学气相淀积和外延生长等领域。杂质的再分布问题随着器件等比例缩小到深亚微米阶段,源、漏区的PN结结深要求做得非常浅。离子注入后的杂质,必须通过足够高温度下的热处理,才能具有电活性,同时消除注入损伤。传统的高温炉管工艺,由于升、降温缓慢和热处理时间长,从而造成热处理过程中杂质的再分布问题严重,难以控制PN结结深。最早的RTP工艺,就是为了离子注入后退火而开发的。RTP设备与传统高温炉管的区别加热元件:RTP采用加热灯管,传统炉管采用电阻丝硅片
温度控制:传统炉管利用热对流及热传导原理,使硅片与整个炉管周围环境达到热平衡,温度控制精确;而RTP设备通过热辐射选择性加热硅片,较难控制硅片的实际温度及其均匀性。
升降温速度:RTP设备的升、降温速度为10-200℃/秒,而传统炉管的升、降温速度为5-50℃/分钟。传统炉管是热壁工艺,容易淀积杂质;RTP设备则是冷壁工艺,减少了硅片沾污。
生产方式:RTP设备为单片工艺,而传统炉管为批处理工艺。
传统炉管的致命缺点是热预算大,无法适应深亚微米工艺的需要;而RTP设备能大幅降低热预算。

参考解析:
【简答题】
[7/61]以P2O2为例说明SiO2的掩蔽过程。 【图片】
参考答案:

以P2O2杂质源为例来说明SiO2的掩蔽过程:当P2O2与SiO2接触时,SiO2就转变为含磷的玻璃体。A.扩散刚开始,只有靠近表面的SiO2转变为含磷的玻璃体。B.大部分SiO2层已转变为含磷的玻璃体。C.整个SiO2层都转变为含磷的玻璃体。D.在SiO层完全转变为玻璃体后,又经过一定时间,SiO2层保护的硅中磷已经扩进一定深度。

参考解析:
【简答题】
[8/61]什么是溅射产额,其影响因素有哪些?简述这些因素对溅射产额产生的影响。
参考答案:

溅射产额:影响因素:离子质量、离子能量、靶原子质量、靶的结晶性只有当入射离子的能量超过一定能量(溅射阈值)时,才能发生溅射,每种物质的溅射阈值与被溅射物质的升华热有一定的比例关系。随着入射离子能量的增加,溅射率先是增加,其后是一个平缓区,当离子能量继续增加时,溅射率反而下降,此时发生了离子注入现象。溅射产额与入射离子种类的关系:溅射产额S依赖于入射离子的原子量,原子量越大,则溅射率越高。溅射产额也与入射离子的原子序数有密切的关系,呈现出随离子的原子序数周期性变化关系,凡电子壳层填满的元素作为入射离子,则溅射率最大。因此,惰性气体的溅射率最高,氩通常被选为工作气体,氩被选为工作气体的另一个原因是可以避免与靶材料起化学反应。溅射产额与入射角度的关系:溅射产额对角度的依赖性于靶材料及入射离子的能量密切相关。
金、铂、铜等高溅射产额材料一般与角度几乎无关。Ta和Mo等低溅射产额材料,在低离子能量情况下有明显的角度关系,溅射产额在入射角度为40°左右时最大。低能量时,以不完整余弦的形式分布,最小值存在于接近垂直入射处;高能量溅射产额近似为:,θ为靶的法线与入射离子速度矢量的夹角。

参考解析:
【简答题】
[9/61]分别简述RVD和GILD的原理,它们的优缺点及应用方向。
参考答案:

快速气相掺杂(RVD,RapidVapor-phaseDoping)利用快速热处理过程(RTP)将处在掺杂剂气氛中的硅片快速均匀地加热至所需要的温度,同时掺杂剂发生反应产生杂质原子,杂质原子直接从气态转变为被硅表面吸附的固态,然后进行固相扩散,完成掺杂目的。同普通扩散炉中的掺杂不同,快速气相掺杂在硅片表面上并未形成含有杂质的玻璃层;同离子注入相比(特别是在浅结的应用上),RVD技术的潜在优势是:它并不受注入所带来的一些效应的影响;对于选择扩散来说,采用快速气相掺杂工艺仍需要掩膜。另外,快速气相掺杂仍然要在较高的温度下完成。杂质分布是非理想的指数形式,类似固态扩散,其峰值处于表面处。气体浸没激光掺杂(GILD:GasImmersionLaserDoping)用准分子激光器(308nm)产生高能量密度(0.5—2.0J/cm2)的短脉冲(20-100ns)激光,照射处于气态源中的硅表面;硅表面因吸收能量而变为液体层;同时气态掺杂源由于热解或光解作用产生杂质原子;通过液相扩散,杂质原子进入这个很薄的液体层,溶解在液体层中的杂质扩散速度比在固体中高八个数量级以上,因而杂质快速并均匀地扩散到整个熔化层中。
当激光照射停止后,已经掺有杂质的液体层通过固相外延转变为固态结晶体。由液体变为固态结晶体的速度非常快。在结晶的同时,杂质也进入激活的晶格位置,不需要近一步退火过程,而且掺杂只发生在表面的一薄层内。由于硅表面受高能激光照射的时间很短,而且能量又几乎都被表面吸收,硅体内仍处于低温状态,不会发生扩散现象,体内的杂质分布没有受到任何扰动。硅表面溶化层的深度由激光束的能量和脉冲时间所决定。因此,可根据需要控制激光能量密度和脉冲时间达到控制掺杂深度的目的。

参考解析:
【简答题】
[10/61]简述APCVD、LPCVD、PECVD的特点。
参考答案:

APCVD——一些最早的CVD工艺是在大气压下进行的,由于反应速率快,CVD系统简单,适于较厚的介质淀积。APCVD缺点:台阶覆盖性差;膜厚均匀性差;效率低。常压下扩散系数小,hg< 在LPCVD系统中,因为低压使得扩散率增加,因此??变大使得??>>??,生长速率受表面化学反应控制,与气流的均匀性无关,硅片可以竖直紧密排列,容量大。LPCVD缺点:淀积速率慢,生长温度高
PECVD——等离子体增强化学气相淀积(PECVD.是目前最主要的化学气相淀积系统。APCVD和LPCVD都是利用热能来激活和维持化学反应,而PECVD是通过射频等离子体来激活和维持化学反应,受激发的分子可以在低温下发生化学反应,所以淀积温度比APCVD和LPCVD低(200-350℃),淀积速率也更高,淀积的薄膜具有良好的附着性、低针孔密度、良好的阶梯覆盖及电学特性。反应原理:等离子体中的电子与反应气体的分子碰撞时,这些分子将分解成多种成份:离子、原子以及活性基团(激发态),这些活性基团不断吸附在衬底表面上,吸附在表面上的活性基团之间发生化学反应生成薄膜元素,并在衬底表面上形成薄膜。活性基团吸附在表面时,不断的受到离子和电子轰击,很容易迁移,发生重新排列。这两个特性保证了所淀积薄膜有良好的均匀性,以及填充小尺寸结构的能力。由于PECVD与非等离子体CVD相比,淀积过程有更多的非平衡特点,故也可以更容易地改变薄膜性质(组成、密度、应力等),并且对于特定的应用可修正这些性能。然而,这也会使薄膜产生不希望有的组分或者性质,如副产品或气体分子结合进薄膜。

参考解析:
刷刷题-刷题-导入试题 - 刷刷题刷刷题-刷题-导入试题 - 刷刷题刷刷题-刷题-导入试题 - 刷刷题
刷刷题-刷题-导入试题 - 刷刷题
刷刷题-刷题-导入试题 - 刷刷题
刷刷题-单词鸭