动物细胞内主要含有mRNA、tRNA、rRNA三种核糖核酸。其中mRNA含有遗传密码,作为蛋白质合成的模板;tRNA活化、转运氨基酸并识别mRNA上的密码,参与蛋白质的合成,其一级结构中含有较多的稀有碱基;rRNA与蛋白质组成核糖体作为蛋白质合成的场所。hnRNA是mRNA的前体,在snRNA参与下剪接成成熟的mRNA。
根据双链DNA分子中两条链碱基互补原则,若一条链中A=30%、G=24%、则其互补链碱基T=30%、C=24%。即T+C=54%,A+G=46%。
原核生物DNA聚合酶以dNTP为底物合成DNA片段。包括DNA聚合酶Ⅰ、Ⅱ、Ⅲ。DNA聚合酶Ⅰ是多功能酶,主要用于填充DNA片段间的间隙和在复制中起校读作用,也参与切除引物或突变的片段,参与复制或DNA的损伤修复。DNA聚合酶Ⅱ主要参与校读及DNA损伤修复。DNA聚合酶Ⅲ是复制中起主要作用的酶。拓扑异构酶是一类能改变DNA分子拓扑构象的酶,在复制中或复制后消除超螺旋。反转录酶可以RNA为模板合成互补的DNA单链形成RNA-DNA杂化双链,还具有核酸酶活性,可以水解杂化分子中的RNA,并以新合成的DNA单链为模板合成互补DNA。
三种主要RNA(mRNA、tRNA和:rRNA)皆在细胞质中参与蛋白质的生物合成,mRNA是模板,tRNA活化并转运氨基酸,rRNA与蛋白质组装成核糖体作为蛋白质合成的“装配机”。RNA可以形成局部互补的双螺旋结构。
动物细胞内主要含有mRNA、tRNA、rRNA三种核糖核酸。其中mRNA含有遗传密码,作为蛋白质合成的模板;tRNA活化、转运氨基酸并识别mRNA上的密码,参与蛋白质的合成,其一级结构中含有较多的稀有碱基;rRNA与蛋白质组成核糖体作为蛋白质合成的场所。hnRNA是mRNA的前体,在snRNA参与下剪接成成熟的mRNA。
某些嘌呤碱的类似物可以竞争性抑制嘌呤核苷酸合成的某些步骤,进而阻止核酸与蛋白质的合成,达到抗肿瘤的目的。6-巯基嘌呤的结构与次黄嘌呤结构相似,与PRPP结合成6-巯基嘌呤核苷酸抑制IMP向AMP和GMP的转化;6-巯基嘌呤还直接抑制次黄嘌呤-鸟嘌呤磷酸核糖转移酶活性,进而抑制AMP与GMP的补救合成。叶酸类似物甲氨蝶呤(MⅨ)可竞争性抑制二氢叶酸还原酶,阻碍四氢叶酸的合成,进而影响嘌呤与嘧啶核苷酸的合成。谷氨酰胺的类似物如氮杂丝氨酸,可以抑制谷氨酰胺参与嘌呤与嘧啶核苷酸的合成。嘧啶的结构类似物如5-FU,在体内转化成FUTP,FUTP以FUMP形式掺入RNA分子,破坏RNA结构与功能;5-FU还可以转变成FdUMP抑制胸苷酸合成酶,使TMP合成受阻。改变戊糖结构的核苷类似物如阿糖胞苷,可以抑制CDP还原成dCDP,直接抑制DNA的合成。
DNA变性是指在某些理化因素作用下维系DNA双螺旋的次级键断裂,DNA双螺旋分子解开成单链的过程。DNA变性可以使其理化性质发生一系列改变,包括黏度下降和OD260紫外吸收增加(增色效应)等。DNA复性指变性后解开的单链重新缔合形成双螺旋。DNA复性后出现OD260紫外吸收降低(减色效应)。
RNA聚合酶无3'→5'外切酶活性,不具备校读功能,所以RNA合成的错误率比DNA合成高得多。
真核生物的至少5种,分别为DNA聚合酶α、β、γ、δ、ε,其中DNA聚合酶γ存在于线粒体,其余都在细胞核。DNA聚合酶α和δ是复制中起主要作用的酶。复制开始首先要从复制起始点解开一段双螺旋成单链,单链的稳定需要单链DNA结合蛋白。