本题旨在从宏观上理解线性规划方法的原理与机制,特别是从二维、三维的直观理解推广到高维的理解。这种宏观的直观的理解对于深刻认识数学概念、方法是非常重要的,对于创新也会有重要的、奇特的启发作用。很明显,有界区域内线性函数的值域肯定是有界的。从直观上可以理解,由于线性函数的平坦性,其极值一定会在边界上达到(许多教材上给出了严格证明)。直观的理解有助于形象的感悟某些理论研究的结论。由于单纯形区域的边界是逐片平直的,它对应的线性目标函数值域也会逐片平直的,人们可以想象,线性函数F会在D区域的顶点处达到极值。所以选项A是正确的。由于单纯形区域是凸集,只要A、B两点在区域内,则线段AB全在该区域内。由于F(A)与F(B)在线性目标函数值域上,不难看出,线段AB中的任一点C对应的F(C)就会落在F(A)与F(B)的连线上。所以选项B也是正确的。选项C可以从选项A与B导出。线性规划问题要么无解,要么只有唯一的最优解,要么会有无穷多个最优解。因为如果有两个最优解,则这两个解的连线段上所有的解都是最优解。所以选项C也是正确的。
绝对误差越小,就测量得越精确,因此,权应与绝对误差的平方成反比。这样,X1的权与X2的权的比为4:25,即X1的权应该为13.8%,X2的权为86.2%,最后公布的测试结果是5.51×13.8%+5.80×86.2%=5.76。
从统计意义上说,正数的分布是随机的。而计算平均值而言,其最后的结果是“入”还是“舍”,也是随机的。就最后取舍的某一位而言,就是0~9之间的10位数字,对于0、1、2、3、4采取“舍”,对实际的数据影响是0、-1、-2、-3、-4。对于5、6、7、8、9采取“入”,对实际的数据影响是+5、+4、+3、+2、+1。因为各位数字出现的情况是等概率的,因此“入”的影响要大于“舍”的影响,所以,对于计算正数平均值而言,会产生略有偏高的统计结果。