At a scientific meeting at Rockefeller University in May, Roger Buick of the University of Washington said that the 3.5 billion-year-old rocks in northwestern Australia hold traces of carbon that once made up living organisms.
Even before Buick’s discovery, ample evidence indicated that life on Earth began while our 4.5 billion-year-old planet was very young. organisms certainly flourished between 2 billion and 3 billion years ago, and claims of older evidence of life have periodically suced. But none have been universally embraced, and Buick’s claim is so new that other scientists haven’t fully reviewed it.
Yet even if the geologist is right about his rocks, his discovery would leave unanswered one of life’s biggest mysteries: how life actually arose. While creationists attribute that spark of life to the hand of God, scientists are convinced there’s a natural explanation. Yet as close as they’ve come to pinning it down, some admit the particulars may never be fully resolved. Others are convinced that we’re edging closer to an answer--and to settling one of the oldest and most contentious questions in science and religion.
To solve the riddle of genesis, biologists, astronomers, geologists, and chemists are attacking the problem from all angles--even trying to re-create life from scratch. In recent years, institutions, including Harvard University, the Georgia Institute of Technology, and Mc University in Canada, have formed "origins" institutes to probe the deepest history of life on Earth--and to search for life in the heavens. "The field is going through a minirenaissance," says chemical biologist Gerald Joyce of the Scripps Research Institute in La Jolla, Calif.
According to scientists, life began when chemistry begat biology--that is, when molecules assembled into more complex molecules that then began to self-replicate. But rocks that might harbor traces of such genesis s simply don’t exist, says Buick. During Earth’s opening act, space debris and cataclysmic volcanic upheavals destroyed the evidence, like an arsonist torching his tracks. The oldest known rocks are about 4 billion years old, yet even they formed roughly half a million millenniums after our planet’s suce cooled and water first pooled into shallow seas. Scientists widely suspect that life began during that long, undocumented interval.
Theories about where and how life began range from the sublime to the bizarre. One camp says that deep-sea vents known as black smokers nurtured the first life. In the late 1970s, a team of researchers from Oregon State University unexpectedly discovered whole ecosystems thriving around a hot vent on the Pacific seafloor. Such vents, where molten rock from inside the Earth’s mantle heats seawater to as much as 660 degrees Fahrenheit, could have provided the energy and basic organic molecules needed to spark life.
Another camp believes that ice--not boiling water--served as the cradle of life. Even the coldest ice contains seams of liquid. These watery pockets could have acted as test tubes for the earliest organic reactions. Experiments show that units of RNA--the genetic material that was probably the forerunner to better-known DNA--spontaneously string themselves together in ice, supporting this theory.
Still other scientists point to the skies. They argue that meteorites carrying amino acids and other important molecules seeded Earth with the necessary ingredient for life. Supporting the idea., high concentrations of amino acids inside meteorites (陨星) found on Earth and in gas clouds in space. A wilder offshoot of this theory, called panspermia (胚种论), suggests that whole bacteria--life itself--first evolved on Mars and then hitched a ride to Earth via small pieces of the Red Planet blasted here by asteroid or comet impacts. But no life has been found on Mars, and the one claim of fossil bacteria in a Martian meteorite, made by NASA scientists in 1996, has been almost universally rejected.
What are scientists’ evidences for the theory that life originates from skies
A.
Meteorites carrying amino acids and other important molecules.
B.
Gas clouds in space and meteorites found on Earth contain the same kind of substance.