【简答题】
Using Venn diagrcuns(维拉图),we can see that mutual information common to three random variable X,Y and Z should be defined by I(X;Y;Z)=I(X;Y) - I(X;Y|Z) This quantity is symmetric in X,Y and Z,despite the preceding asymmetric define.Unfortunately,I(X;Y;Z)is not nesessarily nonnegative.Find X,Y,Z such that I(X;Y;Z)<0,and Prove the following two identities: I(X;Y;Z)=H(XYZ) - H(X) - H(Y) - H(Z)+I(X;Y)+I(Y;Z)+I(Z;X) I(X;Y;Z)=H(XYZ) - H(XY) - H(YZ) - H(ZX)+H(X)+H(Y)+H(Z) The first identity can be understood using the Venn diargram ogy for entropy and mutual lnlormatlon.The second identity follows easily from the first.
手机使用
分享
复制链接
新浪微博
分享QQ
微信扫一扫
微信内点击右上角“…”即可分享
反馈
收藏
举报
参考答案:
参考解析: