大学职业搜题刷题APP
下载APP
首页
课程
题库模板
Word题库模板
Excel题库模板
PDF题库模板
医考护考模板
答案在末尾模板
答案分章节末尾模板
题库创建教程
创建题库
登录
创建自己的小题库
搜索
【判断题】
一致收敛的有界变差函数序列的极限函数也是有界变差函数。()
A.
正确
B.
错误
题目标签:
函数序列
一致收敛
极限函数
如何将EXCEL生成题库手机刷题
如何制作自己的在线小题库 >
手机使用
分享
复制链接
新浪微博
分享QQ
微信扫一扫
微信内点击右上角“…”即可分享
反馈
收藏
举报
参考答案:
举一反三
【简答题】设EnE,fn(x)=χE(x),其中对任意A, 证明 {fn(x)}在E上一致收敛于f(x)的充要条件是: 存在N,对任意n≥N,E[|fn-f|>0]=
查看完整题目与答案
【简答题】讨论函数序列的一致收敛性:Sn(x)=,x∈(-∞,+∞)。
查看完整题目与答案
【简答题】设连续函数列{fn(x))在[α,b]上一致收敛于f(x),而g(x)在(-∞,+∞)上连续。证明:{g(fn(x)) }在[α,b]上一致收敛于g(f(x))。
查看完整题目与答案
【简答题】设在[a,+∞)×[c,d]内成立不等式∣f(x,y)∣≤F(x,y),若在y∈[c,d]上一致收敛,证明在y∈[c,d]上一致收敛且绝对收敛。
查看完整题目与答案
【单选题】判别含参量的无穷积分 在区间 I 上一致收敛的阿贝尔判别法是( )
A.
(1) 在 I 上收敛; (2) 关于 y 单调且且在I上一致有界.
B.
(1) 在 I 上一致收敛; (2) 关于 y 单调且在I上一致有界.
C.
(1) 在 I 上一致收敛; (2) 关于 y 单调且在I上有界.
D.
(1) 在 I 上一致有界; (2) 关于 y 单调且 0( y →+∞) , x ∈ I.
查看完整题目与答案
【单选题】如果区间 上的连续函数列 收敛于一个连续函数,则在区间 上一致收敛。
A.
正确
B.
错误
查看完整题目与答案
【简答题】若把定理13.10中一致收敛函数列{fn}的每一项在[a,b]上连续改为在[a,b]上可积,试证{fn}在[a,b]上的极限函数在[a,b]上也可积.
查看完整题目与答案
【简答题】设f0(x)在[0,a]上连续,又fn(x)=fn-1(t)dt,证明{fn(x)}在[0,a]上一致收敛于零。
查看完整题目与答案
【简答题】证明如果∑|fn(x)|在[a,b]上一致收敛,那末fn(x)在[a,b]上也一致收敛。
查看完整题目与答案
【判断题】若 在区域D内内闭一致收敛,则 在区域D内一致收敛。
A.
正确
B.
错误
查看完整题目与答案
相关题目:
【简答题】设EnE,fn(x)=χE(x),其中对任意A, 证明 {fn(x)}在E上一致收敛于f(x)的充要条件是: 存在N,对任意n≥N,E[|fn-f|>0]=
查看完整题目与答案
【简答题】讨论函数序列的一致收敛性:Sn(x)=,x∈(-∞,+∞)。
查看完整题目与答案
【简答题】设连续函数列{fn(x))在[α,b]上一致收敛于f(x),而g(x)在(-∞,+∞)上连续。证明:{g(fn(x)) }在[α,b]上一致收敛于g(f(x))。
查看完整题目与答案
【简答题】设在[a,+∞)×[c,d]内成立不等式∣f(x,y)∣≤F(x,y),若在y∈[c,d]上一致收敛,证明在y∈[c,d]上一致收敛且绝对收敛。
查看完整题目与答案
【单选题】判别含参量的无穷积分 在区间 I 上一致收敛的阿贝尔判别法是( )
A.
(1) 在 I 上收敛; (2) 关于 y 单调且且在I上一致有界.
B.
(1) 在 I 上一致收敛; (2) 关于 y 单调且在I上一致有界.
C.
(1) 在 I 上一致收敛; (2) 关于 y 单调且在I上有界.
D.
(1) 在 I 上一致有界; (2) 关于 y 单调且 0( y →+∞) , x ∈ I.
查看完整题目与答案
【单选题】如果区间 上的连续函数列 收敛于一个连续函数,则在区间 上一致收敛。
A.
正确
B.
错误
查看完整题目与答案
【简答题】若把定理13.10中一致收敛函数列{fn}的每一项在[a,b]上连续改为在[a,b]上可积,试证{fn}在[a,b]上的极限函数在[a,b]上也可积.
查看完整题目与答案
【简答题】设f0(x)在[0,a]上连续,又fn(x)=fn-1(t)dt,证明{fn(x)}在[0,a]上一致收敛于零。
查看完整题目与答案
【简答题】证明如果∑|fn(x)|在[a,b]上一致收敛,那末fn(x)在[a,b]上也一致收敛。
查看完整题目与答案
【判断题】若 在区域D内内闭一致收敛,则 在区域D内一致收敛。
A.
正确
B.
错误
查看完整题目与答案
参考解析:
AI解析
重新生成
题目纠错 0
发布