大学职业搜题刷题APP
下载APP
首页
课程
题库模板
Word题库模板
Excel题库模板
PDF题库模板
医考护考模板
答案在末尾模板
答案分章节末尾模板
题库创建教程
创建题库
登录
创建自己的小题库
搜索
【简答题】
试写出单位正方体为积分区域时,柱面坐标系和球而坐标系下的三重积分的上下限.
题目标签:
三重积分
柱面坐标
积分区域
如何将EXCEL生成题库手机刷题
如何制作自己的在线小题库 >
手机使用
分享
复制链接
新浪微博
分享QQ
微信扫一扫
微信内点击右上角“…”即可分享
反馈
收藏
举报
参考答案:
举一反三
【简答题】设Ω为,则三重积分化为球坐标系下的三次积分为______.
查看完整题目与答案
【多选题】下列空间闭区域中,能使三重积分的值为0的是( ).
A.
B.
C.
D.
查看完整题目与答案
【单选题】设空间区域$\Omega =\left\{ (x,y,z)|\sqrt{{{x}^{2}}+{{y}^{2}}}\le z\le 1 \right\}$,则三重积分$\iiint\limits {\Omega }{\sqrt{{{x}^{2}}+{{y}^{2}}}\text{d}x\text{d}y\text{d}z}=$ ( ).
A.
$\text{ }\!\!\pi\!\!\text{ }$
B.
$\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$
C.
$\frac{\text{ }\!\!\pi\!\!\text{ }}{3}$
D.
$\frac{\text{ }\!\!\pi\!\!\text{ }}{6}$
查看完整题目与答案
【简答题】利用球面坐标计算三重积分; 其中闭区域Ω由不等式x2+y2+(z-a)2≤a2,x2+y2≤z2所确定。
查看完整题目与答案
【简答题】求三重积分:。Ω:x2+y2≤2z,z≤2。
查看完整题目与答案
【单选题】设积分区域D:x2+y2≤3,则二重积分=( )
A.
-9π
B.
-3π
C.
3π
D.
9π
查看完整题目与答案
【简答题】计算三重积分,其中Ω是由锥面与柱面x2+y2=1以及z=0围成的空间区域(见图8.6).利用柱面坐标计算三重积分I=∭Ω(x2+y2)dV,其与柱面x2+y2=1以及z=0围成的空间区域。
查看完整题目与答案
【判断题】在柱面坐标下的体积元:dV=rdrdzdθ
A.
正确
B.
错误
查看完整题目与答案
【简答题】计算三重积分,(V)由x2+y2=z2与z=1所围成;
查看完整题目与答案
【简答题】设积分区域D为:x 2 +y 2 ≤4y,则
查看完整题目与答案
【简答题】简述高斯公式(联系曲面积分和三重积分).
查看完整题目与答案
【单选题】设空间闭区域Ω由曲面z=√(1-x2-y2)及z=√x2+y2可围成,则三重积分∫∫∫Ω(x2+y2+z2)dxdydz=()
A.
∫02πdθ∫0π/2sinφdφ∫01rdr
B.
∫02πdθ∫0π/4sinφdφ∫01r4dr
C.
∫02πdθ∫0π/2sinφdφ∫01r2dr
D.
∫02πdθ∫0π/4sinφdφ∫01r3dr
查看完整题目与答案
【简答题】计算三重积分其中为平面x+y+z=1与三个坐标面围成的闭区域 ()
查看完整题目与答案
【简答题】如何利用对称性来简化三重积分的计算?
查看完整题目与答案
【单选题】设积分区域D:x2+y2≤3,则二重积分∫∫D(-3)dxdy=()
A.
-9π
B.
-3π
C.
3π
D.
9兀
查看完整题目与答案
【简答题】计算三重积分,其中积分区域Ω是由x=0,y=0,z=0及x+z+z=1所围的. 计算三重积分,其中积分区域Ω是由x=0,y=0,z=0及x+z+z=1所围的.
查看完整题目与答案
【简答题】设积分区域D:x^2+y^2≤2,则二重积分(x,y)dxdy在极坐标中的二次积分为________.
查看完整题目与答案
【简答题】设积分区域V是:1≤x≤2,3≤y≤4,5≤z≤6,则=______.
查看完整题目与答案
【单选题】设是由球面所围成的闭区域,则三重积分( )。
A.
B.
C.
D.
查看完整题目与答案
【简答题】设积分区域:Ω0≤x≤1,0≤y≤1,0≤z≤1,则三重积分______.
查看完整题目与答案
相关题目:
【简答题】设Ω为,则三重积分化为球坐标系下的三次积分为______.
查看完整题目与答案
【多选题】下列空间闭区域中,能使三重积分的值为0的是( ).
A.
B.
C.
D.
查看完整题目与答案
【单选题】设空间区域$\Omega =\left\{ (x,y,z)|\sqrt{{{x}^{2}}+{{y}^{2}}}\le z\le 1 \right\}$,则三重积分$\iiint\limits {\Omega }{\sqrt{{{x}^{2}}+{{y}^{2}}}\text{d}x\text{d}y\text{d}z}=$ ( ).
A.
$\text{ }\!\!\pi\!\!\text{ }$
B.
$\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$
C.
$\frac{\text{ }\!\!\pi\!\!\text{ }}{3}$
D.
$\frac{\text{ }\!\!\pi\!\!\text{ }}{6}$
查看完整题目与答案
【简答题】利用球面坐标计算三重积分; 其中闭区域Ω由不等式x2+y2+(z-a)2≤a2,x2+y2≤z2所确定。
查看完整题目与答案
【简答题】求三重积分:。Ω:x2+y2≤2z,z≤2。
查看完整题目与答案
【单选题】设积分区域D:x2+y2≤3,则二重积分=( )
A.
-9π
B.
-3π
C.
3π
D.
9π
查看完整题目与答案
【简答题】计算三重积分,其中Ω是由锥面与柱面x2+y2=1以及z=0围成的空间区域(见图8.6).利用柱面坐标计算三重积分I=∭Ω(x2+y2)dV,其与柱面x2+y2=1以及z=0围成的空间区域。
查看完整题目与答案
【判断题】在柱面坐标下的体积元:dV=rdrdzdθ
A.
正确
B.
错误
查看完整题目与答案
【简答题】计算三重积分,(V)由x2+y2=z2与z=1所围成;
查看完整题目与答案
【简答题】设积分区域D为:x 2 +y 2 ≤4y,则
查看完整题目与答案
【简答题】简述高斯公式(联系曲面积分和三重积分).
查看完整题目与答案
【单选题】设空间闭区域Ω由曲面z=√(1-x2-y2)及z=√x2+y2可围成,则三重积分∫∫∫Ω(x2+y2+z2)dxdydz=()
A.
∫02πdθ∫0π/2sinφdφ∫01rdr
B.
∫02πdθ∫0π/4sinφdφ∫01r4dr
C.
∫02πdθ∫0π/2sinφdφ∫01r2dr
D.
∫02πdθ∫0π/4sinφdφ∫01r3dr
查看完整题目与答案
【简答题】计算三重积分其中为平面x+y+z=1与三个坐标面围成的闭区域 ()
查看完整题目与答案
【简答题】如何利用对称性来简化三重积分的计算?
查看完整题目与答案
【单选题】设积分区域D:x2+y2≤3,则二重积分∫∫D(-3)dxdy=()
A.
-9π
B.
-3π
C.
3π
D.
9兀
查看完整题目与答案
【简答题】计算三重积分,其中积分区域Ω是由x=0,y=0,z=0及x+z+z=1所围的. 计算三重积分,其中积分区域Ω是由x=0,y=0,z=0及x+z+z=1所围的.
查看完整题目与答案
【简答题】设积分区域D:x^2+y^2≤2,则二重积分(x,y)dxdy在极坐标中的二次积分为________.
查看完整题目与答案
【简答题】设积分区域V是:1≤x≤2,3≤y≤4,5≤z≤6,则=______.
查看完整题目与答案
【单选题】设是由球面所围成的闭区域,则三重积分( )。
A.
B.
C.
D.
查看完整题目与答案
【简答题】设积分区域:Ω0≤x≤1,0≤y≤1,0≤z≤1,则三重积分______.
查看完整题目与答案
参考解析:
AI解析
重新生成
题目纠错 0
发布